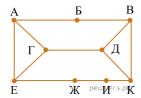

1. На рисунке слева изображена схема дорог *N*-ского района. В таблице звёздочкой обозначено наличие дороги из одного населённого пункта в другой. Отсутствие звёздочки означает, что такой дороги нет.


	П1	П2	П3	П4	П5	П6	П7
П1			*	*	*	*	
П2					*		*
П3	*					*	*
П4	*				*	*	
П5	*	*		*			
П6	*		*	*			
П7		*	*				

Каждому населённому пункту на схеме соответствует его номер в таблице, но неизвестно, какой именно номер. Определите, какие номера населённых пунктов в таблице могут соответствовать населённым пунктам E и F на схеме. В ответе запишите эти два номера в возрастающем порядке без пробелов и знаков препинания.

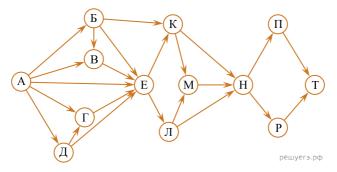
2. На рисунке схема дорог изображена в виде графа, в таблице звёздочками обозначено наличие дороги между населёнными пунктами. Так как таблицу и схему рисовали независимо друг от друга, нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. Укажите номера, которые могут соответствовать пунктам Г и Д. В ответе запишите эти номера в порядке возрастания без пробелов и знаков препинания.

	П1	П2	П3	П4	П5	П6	П7	П8	П9
П1					*	*			
П2						*	*		*
П3					*		*	*	
П4								*	*
П5	*		*					*	
П6	*	*					*		
П7		*	*			*			
П8			*	*	*				
П9		*		*					

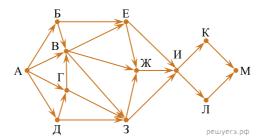
3. По каналу связи передаются сообщения, содержащие только восемь букв: A, Б, Г, Е, И, М, Р, Т. Для передачи и спользуется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны:

Буква	Кодовое слово	Буква	Кодовое слово
A	0101	И	00
Б	1000	M	0100
Γ		P	11
Е	011	T	1001

Укажите кратчайшее кодовое слово для буквы Г. Если таких кодов несколько, укажите код с **наименьшим** числовым значением. *Примечание*. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.


4. По каналу связи передаются сообщения, содержащие только шесть букв: A, Б, B, K, P, T. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: Б - 010, T - 011. Какое наименьшее количество двоичных знаков потребуется для кодирования слова КАТАРАКТА?

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.


5. При регистрации в компьютерной системе каждому пользователю выдаётся идентификатор, состоящий из 15 символов и содержащий только символы из 8-символьного набора: *А, В, С, D, E, F, G, H*. В базе данных для хранения сведений о каждом пользователе отведено одинаковое и минимально возможное целое число байт. При этом используют посимвольное кодирование идентификаторов, все символы кодируют одинаковым и минимально возможным количеством бит. Кроме собственно идентификатора, для каждого объекта в системе хранятся дополнительные сведения, для чего отведено 24 байт на один объект.

Определите объём памяти (в байтах), необходимый для хранения сведений о 20 объектах. В ответе запишите только целое число — количество байт.

- 6. Для регистрации на сайте некоторой страны пользователю требуется придумать пароль. Длина пароля ровно 8 символов. В качестве символов могут быть использованы десятичные цифры и 11 различных букв местного алфавита, причём все буквы используются в двух начертаниях: как строчные, так и прописные (регистр буквы имеет значение). Под хранение каждого такого пароля на компьютере отводится одинаковое и минимально возможное целое количество байтов. При этом используется посимвольное кодирование, и все символы кодируются одинаковым и минимально возможным количеством битов. Определите объём памяти, который используется для хранения 100 паролей. (Ответ дайте в байтах.)
- 7. На рисунке изображена схема дорог, связывающих города А, Б, В, Г, Д, Е, К, Л, М, Н, П, Р, Т. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города А в город Т?

8. На рисунке представлена схема дорог, связывающих города A, Б, В, Г, Д, Е, Ж, З, И, К, Л, М. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города A в город M, проходящих через город В?

9. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в одну из куч (по своему выбору) один камень или увеличить количество камней в куче в два раза. Например, пусть в одной куче 5 камней, а в другой 9 камней; такую позицию мы будем обозначать (5, 9). За один ход из позиции (5, 9) можно получить любую из четырёх позиций: (6, 9), (10, 9), (5, 10), (5, 18).

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 107. Победителем считается игрок, сделавший последний ход, т. е. первым получивший позицию, в которой в кучах будет 107 или больше камней.

В начальный момент в первой куче было 13 камней, во второй куче — S камней; $1 \le S \le 93$.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по этой стратегии игрока, не являющиеся для него безусловно выигрышными, т. е. не являющиеся выигрышными независимо от игры противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение *S*, когда такая ситуация возможна

10. Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежат две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может

добавить в одну из куч один камень или увеличить количество камней в куче в два раза .

Например, пусть в одной куче 6 камней, а в другой 9 камней; такую позицию мы будем обозначать (6, 9). За один ход из позиции (6, 9) можно получить любую из четырёх позиций: (7, 9), (12, 9), (6, 10), (6, 18). Чтобы делать ходы, у каждого игрока есть неограниченное количество камней.

Игра завершается в тот момент, когда суммарное количество камней в кучах становится не менее 62. Победителем считается игрок, сделавший последний ход, то есть первым получивший позицию, в которой в кучах будет 62 или больше камней.

В начальный момент в первой куче было 10 камней, во второй куче — S камней, $1 \le S \le 51$.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника. В описание выигрышной стратегии не следует включать ходы играющего по ней игрока, которые не являются для него безусловно выигрышными, то есть не гарантируют выигрыш независимо от игры противника.

Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Укажите минимальное значение *S*, когда такая ситуация возможна.

- 11. Дано $N = 65_8$, $M = 37_{16}$. Какое из чисел K, записанных в двоичной системе, отвечает условию N < K < M?
- 1) 1101102
- 2) 111110₂
- 3) 110101₂
- 4) 1101002
- 12. Вычислите сумму чисел x и y при $x = 77_{10}$, $y = 77_8$. Результат представьте в двоичной системе счисления.
- 13. Логическая функция F задаётся выражением:

$$(\neg x \land y \land z) \lor (\neg x \land y \land \neg z) \lor (\neg x \land \neg y \land \neg z).$$

На рисунке приведён фрагмент таблицы истинности функции F, содержащий все наборы аргументов, при которых функция F истинна.

Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

Перем. 1	Перем. 2	Перем. 3	Функция
???	???	???	F
0	0	0	1
1	0	0	1
1	0	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала – буква, соответствующая первому столбцу, затем – буква, соответствующая второму столбцу, и т. д.) Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Пример. Пусть задано выражение $x \to y$, зависящее от двух переменных x и y, и таблица истинности:

Перем. 1	Перем. 2	Функция
???	???	F
0	0	1
0	1	0
1	0	1
1	1	1

Тогда 1-му столбцу соответствует переменная y, а 2-му столбцу соответствует переменная x. В ответе нужно написать: yx.

14. Логическая функция F задаётся выражением $(\neg z) \land x$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

Перем. 1	Перем. 2	Перем. 3	Функция
???	???	???	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

В ответе напишите буквы *х, у, z* в том порядке, в котором идут соответствующие им столбцы (сначала — буква, соответствующая 1-му столбцу, затем — буква, соответствующая 2-му столбцу, затем — буква, соответствующая 3-му столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Пример. Пусть задано выражение $x \to y$, зависящее от двух переменных x и y, и таблица истинности:

Перем. 1	Перем. 2	Функция
???	???	F
0	0	1
0	1	0
1	0	1
1	1	1

Тогда 1-му столбцу соответствует переменная у, а 2-му столбцу соответствует переменная х. В ответе нужно написать: ух.